
Inconsistency Resolution in Merging Versions of
Architectural Models

Hoa Khanh Dam
University of Wollongong

New South Wales, Australia

hoa@uow.edu.au

Alexander Reder
Johannes Kepler University

Linz, Austria

alexander.reder@jku.at

Alexander Egyed
Johannes Kepler University

Linz, Austria

alexander.egyed@jku.at

Abstract—State-of-the-art optimistic model versioning systems,
which are critical to enable efficient team-based development
of architectural models, are able to detect and help resolve
basic conflicts arising during the merging of model versions.
However, it is often overlooked that model merging may also
cause severe syntactical and semantic inconsistencies. In this
paper, we propose an approach to guide the resolution of
inconsistencies detected in a merged architectural model. Our
approach automatically finds and presents to the software archi-
tects all solutions for resolving all inconsistencies arisen during
the merging of model versions. For inconsistencies that pre-
exist in the model, our approach is able to suggest exactly
which model elements should be changed to resolve them. Our
approach is built upon a repair generation which can quickly
derive resolutions for an inconsistency by examining its static
and dynamic structure and forming concrete repair actions from
changes in the versions to be merged. An empirical validation on
a range of industrial models has demonstrated that our approach
is scalable to both large models and large differences between
model versions.

I. INTRODUCTION

Architectural models have become central artifacts which

are created and used by software architects. In a collaborative

environment, which is the dominant form of today’s software

development, software architects concurrently and indepen-

dently work on architectural models which subsequently need

to be merged. A basic scenario is where multiple architects

work independently on a single architectural model and, since

they do so separately on their respective workstations, different

versions of that model may exist. These different versions then

need to be merged periodically to support collaboration and

error detection among these architects. In another scenario,

multiple versions of a model may exist due to the concurrent

evolution of product variants. For example, a company may

develop multiple related software products, each undergoing

constant evolution, to meet their respective, ever-changing

user requirements and environmental changes. Here, merging

may be desired to consolidate different variants or simply to

facilitate reuse among the variants. There are many more such

scenarios where software architects find themselves confronted

with concurrently evolving versions of architectural models

[1]. All these scenarios pose the challenging need to merge

these different versions of architectural models.

However, since models are complex, rich data structures

of interconnected elements, traditional text-based versioning

techniques and tools such as Git, Subversion, and CVS have

not been successfully applied to model versioning [2]. With-

out adequate tool support, model merging may result in a

syntactically and/or semantically inconsistent merged version.

Therefore, inconsistency management is of vital importance

in model merging. However, state-of-the-art model merging

techniques have only focused on detecting inconsistencies in

merging versions of models (e.g. [3, 4]) and there has been

very little work in resolving such inconsistencies having arisen

during model merging.

Resolving inconsistencies however is much more difficult

than detecting them since the number of alternative repairs

increases exponentially with the complexity of the consistency

rule and the number of model element accessed [5]. While

previous work has shown that abstract repairs (which merely

identify the model elements that require repairing) are reason-

ably localized and scalable to compute, concrete repairs (which

identify all possible ways of repairing a given model element)

are often infinitely large. For example, even if a repair merely

requires the change of a single state transition action, we must

consider that there are infinitely many ways of writing such

actions. And, unfortunately, effective model merging needs

to explore this apparently infinite space of concrete repairs

for any inconsistency caused - an apparently computationally

unfeasible endeavor.

In this paper, we argue that the space of concrete repairs

for resolving inconsistencies is constrained by changes made

in the versions to be merged. Indeed, we argue that in such a

constrained space, model merging becomes practically feasible

- not only in considering concrete repairs (as opposed to

abstract repairs) but also in fixing a number of inconsistencies

at once (as opposed to individual inconsistencies). However,

we believe that consistent model merging may not be fully

automated since there are decisions that involve tradeoffs

where human expertise and communication are required. As a

result, we propose an approach to assist the software architects

in the merging process by suggesting alternative options in

selecting which changes should be merged.

We extend previous work [5] in such a way that concrete

repairs (i.e. a concrete value is known) for an inconsistency are

automatically generated and actual side effects are computed

(as opposed to abstract repairs as in [5]). Our approach gener-

ates complete and correct repair options for an inconsistency



since it analyzes the structure of an inconsistency (i.e. the

associated consistency constraint) as well as its expected and

observed validation results to pinpoint exactly the cause of

the inconsistency. Thus, our approach avoids the unnecessary

computation cost of trying all the changes to see which

combinations would fix an inconsistency as well as the cor-

rectness and completeness issues associated with hand-crafting

resolution rules. Since considering a number of inconsistencies

at once (those caused by the merging), our approach involves

looking ahead to account for the side-effects of a repair (for an

inconsistency) on the other inconsistencies that may exist. Our

approach also identifies inconsistencies that are not caused by

the merging and provides the software architects with guidance

to resolve them. A number of empirical validations have shown

that our approach is scalable to large industrial architectural

models and large number of changes in the model versions to

be merged.

II. ILLUSTRATIVE EXAMPLE

We describe here a typical example of classical model merg-

ing where two software architects, Alice and Bob, concurrently

work on developing an architectural model for a software

controlling the washing machine. In this example, Alice and

Bob use the Unified Modeling Language (UML) which has

extensively been used for representing the architectural models

of software systems in recent years [6, 7]. We however note

that our approach also applies to arbitrary architectural models

as long as they follow a well-defined metamodel with explicit

constraints, which is today’s norm.

Figure 1 shows a UML fragment of the architectural model

which covers both the structural view (a class diagram) and the

behavioral views (a sequence diagram and a state diagram).

The class diagram describes three components GUI, Control
and Driver and their connectors: an association (between

GUI and Control) and a generalization (between Control and

Driver). The sequence diagram describe a typical scenario

of running the washing machine which involves the interac-

tion between the instances of components GUI and Control,
whereas the state machine diagram shows the behavior of the

controller of the washing machine, i.e. component Control.
Let us now assume that both Alice and Bob check out

the latest version (i.e. the Original Version) from a common

repository and begin making their changes. Alice designs the

new rinsing feature by adding a behavioral feature (in the form

of an operation) rinse() in component Control, adding message

rinse to component instance ctrl and adding state rinsing in

the state machine diagram (see Version 1 in Figure 1). She also

renames the message start to run and makes component Driver
become a subtype of component Control. In the meanwhile,

being unaware of Alice’s changes, Bob completes the design

for the stopping feature by making component Control become

a subtype of component Driver and adding a message stop to

component instance ctrl (see Version 2 in Figure 1). He also

renames operation run() to init() in component GUI, renames

message start to init (sent to component instance gui), and

adds a message turnOff (sent to component instance gui).

When both Alice and Bob commit their own version,

existing model versioning systems would typically produce

a merged version as in Figure 1 and highlight a conflicting

change: both Alice and Bob renamed message start differently,

and would ask (either of) them to deal with the conflict. There

are however several issues in this merged version in terms of

the required syntactical (e.g. well-formedness) and semantical

consistency (e.g. coherence between different views) for an

architectural model. Such consistency conditions are usually

specified in terms of constraints. Table I describes three typical

consistency constraints on how a UML sequence diagram

relate to class and state machine diagrams and the inheritance

relationship between components in the class diagram. These

three constraints are taken from the literature (C1 and C2 from

[8]) and UML specifications (C3).

TABLE I
EXAMPLE OF CONSISTENCY CONSTRAINTS

C1 The name of a message must match an operation in the receiver’s

component (the operation may be inherited from a generalization)

C2 The sequence of incoming messages to a component instance in

a sequence diagram must match the allowed events in the state

machine diagram describing the behavior of the component type.

C3 Inheritance cannot include cycles1.

Since both Alice and Bob have each created an inheritance

relationship between components Control and Driver but in

different directions, both of them are integrated into the

merged version which now has an illegal circulate inheritance

(violating constraint C3). In addition, constraint C1(start) is

violated in the original version (since message start received

by instance gui of component GUI does not match with any

operation in the component), and both Alice and Bob, each in

their own way, have attempted to resolve this inconsistency.

However, this constraint becomes violated again in the merged

version since only the operation run() is updated and the

conflict involving the renaming of message start is awaiting

for manual resolution. In addition, in the merged version the

new message turnOff does not match with any operation

in component GUI, which causes another inconsistency (i.e.

violation of constraint C1(turnOff)). Finally, there is still no

operation in component Control matching with message wash,

and thus inconsistency C1(wash) still exists in the merged

version.

III. UNDERSTANDING AN INCONSISTENCY

It is important to understand how inconsistencies have arisen

in the merged model, as part of the investigation of how

to resolve them. Table II captures a typical lifecyle of an

inconsistency in terms of its presence (denoted as P) and

absence (denoted as A) in a given version of the model. The

1Consistency constraints for UML are typically expressed in the standard
Object Constraint Language (OCL). For instance, constraint C3 is expressed
in OCL as not self.allParents()→includes(self) where self is the context
element, i.e. the UML Class.



Classical 3-way model 
merging

Original Version (i.e. common ancestor)

Version 1 
Alice

Version 2
Bob

Conflicts:
V1: Rename message “start” to “run”
V2: Rename message “start” to “init”

+spin()
Control

+run()
GUI gui:GUI ctrl:Control

start

wash

spin

idle washing

spinning

wash

spin

+stop()
Driver

stop

C1(start)
C1(wash) 
C2(ctrl)

+spin()
+rinse()

Control

+run()
GUI gui:GUI ctrl:Control

run

wash

rinse

idle washing

rinsing

wash

rinse

+stop()
Driver

spin

spinning

spin
stop

C1(wash)
C2(ctrl)

+spin()
Control

+init()
GUI gui:GUI ctrl:Control

init

wash

spin

idle washing

spinning

wash

spin

+stop()
Driver

stop
wash

stop C1(wash)
C1(turnOff)

turnOff Merged version

C1(start) 
C1(wash)
C1(turnOff)
C3(Control)
C3(Driver)

gui:GUI ctrl:Control

start

wash

rinse

spin

stop

+spin()
+rinse()

Control

+init()
GUI

+stop()
Driver

stop

idle washing

rinsing

wash

rinse

spinning

spinstop

turnOff

Fig. 1. An example of the traditional inconsistent model merging

TABLE II
LIFECYCLE OF AN INCONSISTENCY: BEING PRESENT (P) OR ABSENT (A)

Pattern 1 2 3 4 Other

Original model P P P P A A A A P P P P A A A A

Version 1 P P A A P P A A P P A A P P A A

Version 2 P A P A P A P A P A P A P A P A

Initial merged model P P P P P P P P A A A A A A A A

presence of an inconsistency means that the corresponding

consistency constraint has been instantiated and evaluated as

being inconsistent. By contrast, the absence of an inconsis-

tency indicates that the related constraint instance either has

been evaluated as being consistent or has been destroyed (due

to the deletion of the context element).

Inconsistencies existing in the original model may disappear

in the merged model (e.g. C2(ctrl) in the running example, see

Figure 1) since the revised changes and/or the merging itself

have fixed them (see column “Other” in Table II). The merged

model may however contain inconsistencies due to one of the

following patterns of reasons:

1) An inconsistency exists in the original model, still exists

in the two versions (since neither of the changes were

able to resolve it), and also exists in the merged model

(since integrating the changes from both versions still

cannot resolve it). The violation of constraint C1(wash)
is an example of this inconsistency type.

2) An inconsistency exists in the original model (e.g.

C1(start)), but is absent in one or both revised versions

(since either of the changes has fixed it), however returns

in the merged model (since merging the changes has re-

created the inconsistency).

3) An inconsistency (e.g. C1(turnOff )) does not exist in

the original version, but is present in one or both revised

versions (since the change(s) has caused it) and is still

present in the merged model (since merging the changes

has not affected it).

4) An inconsistency does not exist in the original model,

still does not exist in both versions, but is present in the

merged model (since merging the changes has caused the

inconsistency). The violation of constraints C3(Control)
and C3(Driver) is an example of this inconsistency type.

Inconsistencies whose lifecycle follow the first pattern have

pre-existed in the original model and also existed in the

versions. We will not be able to resolve them by reversing

the revisions’ changes since such changes were not the causes

of the inconsistencies nor were able to resolve them. Applying

conflicting changes, if they exist, may be able to resolve such

inconsistencies. Otherwise, they are classified as persistent
inconsistencies.

Inconsistencies whose lifecycle follow the remaining three

patterns are caused by either the changes in the revisions

(pattern 3) or the merging of those changes together (patterns

2 and 4). We will therefore be able to fix them by reversing

the appropriate changes. Applying conflicting changes, if they



exist, may also be able to resolve such inconsistencies, or

create new inconsistencies, or has no effect on the consistency

of the model. We refer to those inconsistencies as non-
persistent inconsistencies.

Our approach detects inconsistencies using an existing in-

cremental inconsistency checker [8] which identifies model

elements that are changed and affect the truth values of

consistency constraint instances. Such locations form the scope
of a constraint instance, which is established by automati-

cally observing which model elements are accessed during

the evaluation of consistency constraints. For instance, the

evaluation of constraint C1 on message start accesses this

message first, then navigates to the message’s receiver gui,
its base component GUI, and finally the operation init(). The

scope of constraint C1(start) is therefore the model elements

{start, gui,GUI, init()}. A constraint instance needs to be re-

evaluated if and only if elements in its scope changes.

This incremental inconsistency checker enables us to com-

pute the constraint instances that are affected by changing

a given location – those that have the location in their

scope. As a result, changes made to a model only trigger re-

evaluations of the affected constraint instances, rather than all

the constraint instances. In addition, the scope of a constraint

instance is also the basis for resolving a violation of the

constraint (i.e. an inconsistency) since it indicates the locations

that may need fixing. This incremental inconsistency checking

approach has been shown empirically to be highly scalable for

large, industrial UML models [8].

IV. DEFINITIONS

We provide here a few basic definitions. Firstly, we define

an architectural model which represents a software system as

below.

Definition 1. An architectural model consists of a set of model
elements, each of which is defined by a universally unique
identifier (UUID) and a type (i.e. metaclass). A model element
has a number of structural features, whose value can be a
primitive type or a reference to other model elements.

The definitions of model elements (i.e. their type and

features) are described in detail in a metamodel (e.g. UML

metamodel). For example, Control is a model element of type

Class in the architectural model of our running example (see

Figure 1). Component Control has a name feature (of type

string) or an ownedOperation feature (a reference to a set

of operations, which are model elements of type Operation,

in the class). Component Control has an UUID and it is

assumed that although a model element may be changed in

various versions, its UUID does not change2. Change actions

are formally defined as below.

Definition 2. There are three possible types of primitive
actions performed upon a model: add(e, t) – add a new model

2In practice, most tool support for models also provide and use unique
identification for model elements. For instance, the standard textual encoding
of UML models using XML Metadata Interchange (XMI) requires an unique
XMI identifier for each model element.

element type t with the UUID of e; delete(e, t) – delete an
existing model element of type t with the UUID of e; and
modify(e, f, vo, vn) – modify the value of feature f of e from
vo to vn.

For example, Alice creates message rinse to component

instance ctrl, which consists of a sequence of primitive ac-

tions: adding a new message rinse, modifying its receiveEvent
feature, and modifying the represent feature of Lifeline ctrl.

Definition 3. Each action a has a reverse action a with the
opposite effect. Specifically, the reverse action of each atomic
action is given in the following table.

Action a Reverse action a

add(e, t) delete(e, t)

delete(e, t) add(e, t)

modify(e, f, vo, vn) modify(e, f, vn, vo)

Definition 4. The difference Δ between two versions Mold and
Mnew of a model is a sequence of actions that when applied
to model Mold, yields model Mnew, i.e. Mold +Δ = Mnew. The
reverse of Δ, denoting as Δ, is a sequence of actions that
when applied to Mnew, yields Mold, i.e. Mnew +Δ = Mold.

Note that Δ is computed simply by reversing the sequence

in Δ and replace each action with its reverse. When two (or

more) difference sets of changes Δ1 and Δ2 (from two differ-

ent versions) are applied to the same model (i.e. the common

ancestor), conflicts may arise due to contradicting changes.

Two typical scenarios of a conflict are when one software

architect modifies a feature of a model element deleted by the

other (i.e. modify(e, f , vo, vn) in Δ1 and delete(e, t) in Δ2),

and when both software architects modify the same model

element feature in different ways (modify(e, f , vo, vn) in Δ1

and modify(e, f , vo, vn′) in Δ2). In our running example, Alice

and Bob rename message start differently, which causes a

conflict. Note that equivalent changes (e.g. creating a new

component with the same name) may also be considered as a

conflict but we deal with this simply by considering them as

equal (i.e. the same UUID) and merging their features, i.e. a

model element is included in the merged model which contains

all features of both.

An (initial) merged model is created by applying the non-

conflicting set of changes to the common ancestor model.

Definition 5. Let Δ′
1 and Δ′

2 be the set of non-conflicting
changes in the difference Δ1 between model M1 and M and
the difference Δ2 between model M2 and M respectively. The
(initial) merged model Mi is obtained by applying changes
in Δ′

1 and Δ′
2 to M, i.e. Mi = M + Δ′

1 + Δ′
2. The set of

available repair actions for resolving inconsistencies in Mi is
Θ = Δ′

1 ∪Δ′
2 ∪ (Δ1 −Δ′

1) ∪ (Δ2 −Δ′
2).

Figure 2 shows the set of available actions Θ for our

running example. For example, in version 1 Alice has added an

inheritance relationship from component Driver to component



Δ′
1 (The reverse of Alice’s delete(Driver-inherit-Control, Generalization)

non-conflicting changes) delete(rinsing, State)

delete(rinse, Message)

Δ1 −Δ′
1 <modify(Message[start], name, ‘start’, ‘run’),

Δ2 −Δ′
2 modify(Message[start], name, ‘start’, ‘init’)>

Δ′
2 (The reverse of Bob’s delete(Control-inherit-Driver, Generalization)

non-conflicting changes) modify(Operation[init], name, ’init’, ’run’)

delete(stop, Message)

delete(turnOff, Message)

Fig. 2. The set of available actions Θ for our running example.

Control, and thus this change action is part of the non-

conflicting changes Δ′
1 between version 1 and the original

version. The reverse of this action, i.e. deleting the Driver-
inherit-Control relationship (of type Generalization), is part

of Δ′
1. Note that the conflicting actions involving renaming

message start are stored as a pair (in italic in Figure 2).

Definition 6. A repair plan P for an inconsistency I in model
M is a minimal sequence of actions S when performed on M
yields a new model M’ and the inconsistency I is resolved in
M’. Action sequence S is minimal in that removing any actions
from it always results in a sequence that no longer resolves I
in M.

The reverse of repair plan P, denoting as P, is obtained by

reversing the sequence in P and replacing each action with its

reverse.

V. PRINCIPLE

The main objective our approach is providing a guidance

mechanism to support the software architects in merging their

concurrent changes to the model while preserving its consis-

tency. Our approach is built atop existing model versioning

technologies in order to use their capabilities in identifying the

differences between versions of an architectural model (e.g.

[1, 9, 10]), and obtaining an initial merged model in which

non-conflicting changes are merged (see [2] for a review of

existing model merging techniques). We guide the software ar-

chitects to resolve inconsistencies found in the initial merging

by a combination of three methods: (a) reversing the non-

conflicting changes which have been applied; (b) applying

a (non-conflicting) subsets of conflicting changes; and (c)

making further “new” changes to the model.

Details of our merging process are described as below.

We assume here a common ancestor model M that has two

concurrent versions M1 and M2 that need to be merged.

1) First, we compute the difference Δ1 between M1 and

M, and the difference Δ2 between M2 and M. We then

identify conflicting changes and non-conflicting changes

in Δ1 and Δ2.

2) Next, we create an initial merged model Mi by applying

non-conflicting changes (in Δ1 and Δ2) to the common

ancestor model M.

3) Based on the changes in Δ1 and Δ2, we establish the

available action set Θ which contains the reverse of non-

conflicting changes and pairs of conflicting changes (see

Definition 5 in Section IV).

4) We then use our incremental consistency checker [8] to

identify inconsistencies in the initial merged model Mi.

5) We explore to find which of those inconsistencies (and

how they) can be fixed using change actions in Θ (non-
persistent inconsistencies) and which of those cannot

be fixed (persistent inconsistencies) using the available

actions.

Since steps 1 – 4 can be done using existing model

versioning techniques and inconsistency checking approaches,

our focus in this paper is on step 5. In the next sections, we

first present a naive and expensive approach to step 5, and then

describe in detail our much more efficient approach which is

also able to identify new changes that can be applied to the

model to resolve persistent inconsistencies.

VI. TRIAL-AND-ERROR APPROACH

The exploration to find out how non-persistent inconsisten-

cies in the initial merged model Mi can be resolved using

available actions in Θ (step 5 in Section V) can be done in a

simple, brute-force manner. This approach would try applying

all possible combinations of actions in Θ onto Mi to see which

combination(s) resolves all the non-persistent inconsistencies

and does not cause any new inconsistencies. The number of

combinations that we need to iterate through is 2#changes where

#changes is the number of change actions in Θ (number

of k-combinations for all k from 1 to #changes). Thus, the

computational complexity of such a brute-force approach is

unfortunately exponential with the number of change actions

in Θ, i.e. O(#C ∗ 2#changes) where #C is the total number of

consistency constraints imposed on the model.

An improved version of this approach is to perform the

exploration incrementally. Specifically, we consider one (non-

persistent) inconsistency at a time and enumerate through

only combinations of actions in Θ that may affect the truth

value of the constraint associated with the inconsistency (i.e.

accessing the constraint’s scope). We then try applying each

of those combinations of changes to the initial merged model.

If the change does not resolve the inconsistency, we move

on trying another combination. If the change actually resolves

the inconsistency, we then continue a similar search to find

available repairs for other non-persistent inconsistencies or

new inconsistencies caused by the change until we found

all possible combinations that can resolve all non-persistent

inconsistencies in the initial merged model.

The improved approach utilizes the scope of a constraint

(see the end of Section III) to reduce the number of com-

binations that need to be enumerated to identify fixes for

the constraint violation: from 2#changes (as in the brute-force

approach) to 2#scopeChanges where scopeChanges is the number

of change actions in Θ that access the scope of the constraint.

Nonetheless, it still involves iterating through an exponential

number of combinations just to find those combinations that



resolve an inconsistency. Thus, the worst-case computation

complexity of this approach is still exponential with the

number of change actions in Θ (where all actions in Θ access a

constraint’s scope). Another serious limitation of this approach

is that it cannot suggest new changes (i.e. not available in Θ)

to resolve persistent inconsistencies.

VII. REPAIR GENERATION APPROACH

Although the trial-and-error approach needs to enumerate

through a large number of combinations of available actions,

there is only a very small number of them which can resolve

an inconsistency. In fact, previous work [5] has shown that

independent of the model size, there are on average only 12

possible repairs per inconsistency3 (see Figure 3). Thus, it is

inefficient to enumerate through (e.g.) 2100 combinations, only

to find 12 of which can actually resolve an inconsistency.

0

10

20

30

40

50

102 103 104 105
Model Size

A
ct
io
n
s/
In
co
n
si
st
en
cy

⊕

⊕

⊕ ⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕⊕
⊕

⊕
⊕

⊕
⊕
⊕

⊕
⊕

Fig. 3. Average Number of Repairs/Inconsistency

We propose here a more efficient approach which generates

the exact repair(s) for each inconsistency by analyzing the

structure of a consistency constraint and its expected and

observed validation results (through observing the constraint’s

validation) to determine exactly which parts of the inconsis-

tency must be repaired. In the following we briefly outline the

approach presented in [5] and explain how this approach has

been extended to be able to make repair actions concrete (i.e.

a concrete value is known).

A. Repair Generator

The basis for the repair generation is the so called validation

tree [5], which is created when a constraint instance is first

evaluated. For illustration we formalize constraint C1 as

below.

Message m :

(∀ l ∈ m.receiveEvent.covered :

∃ o ∈ l.represents.type.ownedOperation :

o.name = m.name)

3Data collected from the evaluations on 29 industrial UML models and 18
consistency rules written in OCL.

This constraint is written for a context element of the

type Message. The validation tree which was created when

evaluating constraint C1(start) is shown in Figure 4.

m[start]

∀
false

l ∈ m.receiveEvent.covered

∃
false

o ∈ l.represents.type.ownedOperation

=
false

o[init] m[start]

Fig. 4. Validation Tree for C1(start)

The validations starts at the model element start (the root

node of the validation tree). The first operation executed is

the universal quantifier (∀) that iterates over all lifelines that

the message is sent to (UML allows a message to be sent on

more than one lifeline). The lifelines are accessed through

the properties receiveEvent and covered from the message

(m) start. The universal quantifier has as its condition an

existential quantifier (∃) that iterates over the operations of

the component that is the type of the lifeline. This is done

by accessing the properties represents (instance gui of the

lifeline), type (component GUI), and ownedOperation (init).
The condition of the existential quantifier compares (=) the

message name (start) with the name of each operation (only

init in this case). Since there does not exist an operation that

is named start, the existential quantifier validates to false and

thus the result of the complete constraint validation is also

false (i.e. an inconsistency has been detected). More details of

how a validation is built can be found in [5].
A repair tree is built based on the validation tree. The

nodes of the repair tree are directly derived from the validation

tree: ∀,∧→ + (combinations of repair actions), and ∃,∨→ •
(alternative repair actions). Each branch of a validation tree

has an expected and validated result. Note that in Figure 4

only the validated results are shown. The expected result for

a constraint is always true and will be propagated top-down

in the validation tree. A negation in the constraint will cause

an inverting of the expected result (true ↔ false). A mismatch

between the expected and the validated result triggers the

generation of repair actions. The type of the repair actions

(i.e. create, delete, and modify) is derived from the logical

operators and quantifier types: ∀ → delete, ∃ → create, and

= → modify). The model elements that must be changed are

the leaves of the logical expression that are violated (mismatch

of the expected result to the validated result) in the validation

tree.
However, repair actions generated in [5] are abstract repairs.

In this example, one abstract repair generated (as in [5]) is the

renaming of operation init, denoted as modify(Operation[init],
name), but it does not reveal which string to rename the



operation to. We therefore extend the work in [5] to compute

concrete repairs. The new repair generator takes additional

information which is a set of available (concrete) actions Θ.

Values for the repairs are derived from actions in Θ, i.e. Θ is

used as the source for providing concrete values to instan-

tiate the abstract repairs generated. For example, renaming

operation init to run (i.e. modify(Operation[init], name, ‘init’,
‘run’)) is an action in Θ (see Figure 2) which is an instance

of the abstract repair modify(Operation[init], name). Another

abstract repair suggested by the repair tree is the renaming of

message start and modify(Message[start], name, ‘start’, ‘run’)
is in Θ (i.e. an instance of the abstract repair). Therefore, an-

other concrete repair for C1(start) is modify(Operation[init],
name, ‘init’, ‘run’) and (+) modify(Message[start], name,
‘start’, ‘run’). Figure 5 shows the full concrete repair tree for

the validation shown in Figure 4 using the available actions in

Θ. This repair tree represents two alternative, available repair

plans for resolving inconsistency C1(start): renaming message

start to ‘init’, or renaming both the message and operation init
to ‘run’.

C1(start) •
〈modify,Message[start], name, ‘init‘〉

+
〈modify,Operation[init], name, ‘run‘〉
〈modify,Message[start], name, ‘run‘〉

Fig. 5. Concrete repair tree for C1(start)

B. Exploring Inconsistency Resolutions

The process of exploring options to resolve non-persistent

inconsistencies4 in an initial merged model Mi is described

in Algorithm 1. First, the model is incrementally validated

against a number of consistency constraints to identify a set of

inconsistencies. If there is no (non-persistent) inconsistencies

in the model, this model is a solution. Otherwise, we will

explore incrementally how to fix them (one at a time) as

follows.

We get the first inconsistency I (line 8 of Algorithm 1),

and invoke the repair generator (described in the previous

section) by calling function get−available− repairs(Mi,Θ, I)
to retrieve a set of alternative repair plans for inconsistency

I. Note that those repair plans are derived from the actions in

the set of available actions Θ.

If there is no available repair plan found for inconsistency

I, we terminate our exploration (lines 10 – 11). Otherwise, for

each repair plan P (lines 14 – 17), we execute it (in simulation)

by performing its actions onto model Mi, which yields model

M′
i . Repair plan P may has positive side-effects (resolving

some other inconsistencies) and/or negative side-effects (caus-

ing some new inconsistencies) or no side-effect. Therefore, we

need to explore if M′
i contains any inconsistencies (either the

same existing inconsistencies as in Mi or new inconsistencies

caused by the application of repair plan P) and how to resolve

4Note that persistent inconsistencies are ignored in this exploration and will
be dealt separately.

Algorithm 1: mergeExplore(): explore merging options

Input: Mi, a model; fixedInconsistencies, a set of fixed

inconsistencies; Θ, the available action set;

Output: solutions, a set of alternative merged models

1 begin
2 inconsistencies := validate-incrementally(Mi)

3 if inconsistencies.size() = 0 then
4 solutions.add(Mi)

5 else if inconsistencies ∩ fixedInconsistencies �= ∅

then
6 return ∅

7 else
8 I := inconsistencies.removeFirst()

9 planList := get-available-repairs(Mi, Θ, I)

10 if planList.size() = 0 then
11 return ∅

12 else
13 fixedInconsistencies.add(I)

14 foreach P in planList do
15 M′

i := execute-in-simulation(P, Mi)

16 solutions.addAll(mergeExplore(M′
i , Θ,

fixedInconsistencies))

17 Mi := execute-in-simulation(P, M′
i )

18 return solutions

/* Initial call is mergeExplore(Mi,Θ,∅)
where Mi is the initial merged
model. */

them. This exploration continues recursively in a depth-first-

search manner (line 16). After we have done with P, we will

undo all of its actions to obtain back Mi (to avoid keeping

multiple copies of the model) and do a similar exploration

with the next alternative repair plan in the list.

Our algorithm also has a loop detection (lines 5 – 6) which

keeps track of all inconsistencies that have been fixed so far

in an exploration path (i.e. fixedInconsistencies) and checks

if the same inconsistency is seen again in that path. In such

cases, we have a loop and the exploration terminates with no

solution and moves on to the next alternative. We also note

that the algorithm tries to find all solutions (and present them

to the software architect for selection), i.e. continue searching

for other solutions even after a solution is found.

Figure 6 shows an example of how we explore (using

Algorithm 1) to find alternative resolutions for non-persistent

inconsistencies in the initial merged model in our running

example. First, we would like to fix inconsistency C1(turnOff )
and the repair generator gives us only one available option

in Θ (see Figure 2) which involves the deletion of message

turnOff . Applying this repair gives us a new model M1
i

in which inconsistency C1(turnOff ) has been resolved but

inconsistencies C3(Control), C3(Driver) and C1(start) still



exist. We now want to fix C3(Control) and the repair generator

gives us two available alternative repair plans: deleting Driver-
inherit-Control or deleting Control-inherit-Driver relationship.

We try applying the first repair which has a positive side-effect

(also resolving inconsistency C3(Driver)), yielding model

M2
i which has only one inconsistency C1(start). The repair

generator then gives us two alternative repair plans: renaming

message start to init, and renaming message start to run()

and renaming operation init() to run(). The outcomes of both

options are consistent models (i.e. models M3
i and M4

i ), and

thus they are part of the set of solutions presented to Alice

and Bob.

Mi
1

Mi

delete(Driver-inherit-
Control, Generalization)

C1(turnOff)
C3(Control)
C3(Driver)
C1(start)

delete(Control-inherit-Driver, 
Generalization)

Mi
2

Mi
3

Mi
5

Mi
4

Mi
6

delete(turnOff, Message)
C3(Control)
C3(Driver)
C1(start)

C1(start)
modify(Message[start],

name, ‘start’, ‘init’)

C1(stop)
C1(start)

delete(stop, Message)

C2(ctrl)
C1(start)

No available actions can fix 
C2(ctrl) and thus the exploration 
terminates here.

modify(Message[start],
name, ‘start’, ‘run’)

modify(Operation[init],
name, ‘init’, ‘run’)

Fig. 6. An example of how to find solutions for resolving all non-persistent
incosnistencies

We then try the other repair plan for resolving inconsistency

C3(Control), i.e. deleting Control-inherit-Driver relationship.

This repair has one positive side-effect (also resolving incon-

sistency C3(Driver)) and one negative side-effect (causing

new inconsistency C1(stop) since component Control no

longer inherits operation stop() from component Driver). The

repair generator gives us one available repair to resolve incon-

sistency C1(stop), which is deleting message stop. We apply

this repair (yielding model M6
i ) but it has a negative effect

(causing new inconsistency C2(ctrl) since the transitions in the

state machine diagram now do not match with the sequence of

messages). We ask the repair generator but there is no available

repair that can be formed for resolving C2(ctrl) and thus the

exploration terminates here.

C1(wash) •

〈modify,Message[wash], receiveEvent〉
〈delete,Message[wash], covered〉
〈modify, Lifeline[ctrl], represents〉
〈modify, Lifeline[ctrl], type〉
〈add, Class[Control], ownedOperation〉
〈modify,Message[wash], name〉
〈modify,Operation[spin], name〉
〈modify,Operation[rinse], name〉

Fig. 7. Abstract repair tree for C1(wash)

Our repair generation approach is also able to identify new

changes (i.e. not made in the versions) that can be applied

to the model to resolve persistent inconsistencies and the

potential side-effects of such changes. Specifically, for persis-

tent inconsistencies (which we already know that we cannot

resolve them using available actions in Θ), we will provide

the software architects with a set of abstract repair plans

represented in a hierarchical manner. For example, the set of

abstract repair plans for resolving (persistent) inconsistency

C1(wash) is shown in Figure 7, which suggests a number

of ways to resolve this inconsistency such as modifying the

message’s name or the name of an existing operation.

VIII. EVALUATION

A prototype implementation of our approach has been

implemented and integrated with IBM Rational Software

Architect (RSA) [11] and the Model/Analyzer consistency

checker [12] (an implementation of [8]). The consistency

constraints are written in the Object Constraint Language

(OCL). We use the model differencing functionality provided

with RSA to obtain the difference between model versions

(and from that we derive the set of available actions Θ)

and an initial merged model. The Model/Analyzer provides

instant consistency checking on the initial merged model. The

tool returns to the user a set of options that can resolve

inconsistencies having arisen during merging. We now discuss

an evaluation of our approach using the implemented tool.

A. Scalability

The computation time of Algorithm 1 basically depends on

two factors: the number of non-persistent inconsistencies in

the initial merged model (since a solution is found only when

all non-persistent consistencies are resolved – see line 3 of

Algorithm 1) and the average number of concrete repair plans

found for an inconsistency (since the search for solutions tries

each of those repair plans – see line 14 of Algorithm 1). The

number of concrete repair plans in turn depends on the size

of the model and the size of the available action set Θ (see

line 9 of Algorithm 1). Therefore, the three scalability drivers

of our approach are the size5 of Θ, the model size and the

number of non-persistent inconsistencies in the initial merged

model.

We have evaluated our approach on four industrial UML

models of different sizes: 290, 2,212, 16,255 and 33,347

model elements. The evaluations were done on 64bit Linux

(3.7) with Intel Core 2 Quad CPU (Q9550) @ 2.84Ghz,

8GB RAM (4GB available for the IBM RSA). We used 18

consistency rules written in OCL (all of them are described

in [13]) which produce from 92 to 13,504 constraint instances

in those models. Since we did not have available large UML

models with multiple versions, for the purpose of a scalability

assessment, we have created the versions of the models by

randomly introducing a number of changes to each model.

For each set of changes, an initial merged model and a set of

5Note that the size of Θ is actually the number of changes in the model
versions to be merged.



available actions Θ were created and they were the input to our

tool. We have also tested our approach with different sizes of

Θ, i.e. from containing only 3 up to 1,650 change actions. We

then measured the time our tool took for finding all possible

solutions for resolving all non-persistent inconsistencies found

in the initial merged model.

1

10

100

1000

10000

100000

1 10 100 1000 10000

Ti
m

e 
(m

s)

Number of changes (i.e. the size of the available action set �)

M=290
M=2212
M=16255
M=33347

Fig. 8. Computation time for different models and changes

Figure 8 shows the computing time for all four models

against the number of change actions in Θ (noting that both

graphs in Figures 8 and 9 are in the logarithmic scale). The

first important observation in this result is that the computing

time increases linearly with the number of change actions

in Θ across all four models. This result confirms the supe-

rior efficiency of our repair generation approach, compared

to the trial-and-error approach where the time taken grows

exponentially with the number of changes. In addition, this

result demonstrates that the computing time does not increase

as the model size increases (e.g. with 30 change actions in Θ,

it took approximately the same 50ms for the smallest model

with 290 model elements and the largest model with 33,357

model elements). Therefore, our approach can scale to very

large models and to very large numbers of changes in the

model versions to be merged. For example, with the model of

33,347 elements and 1,650 changes to be merged, it took our

tool less than 17s to find all 9 possible solutions for resolving

all 71 inconsistencies in the initial merged model.

Figure 9 shows the computing time against the number of

non-persistent inconsistencies in the initial merged model. As

can be seen, the time taken to find all the solutions to resolve

those inconsistencies grows polynomially with their number.

Our approach can also quickly find solutions to resolve a

large number of inconsistencies: it took only less than 9s

for finding all the 6 possible solutions which resolve all 100

inconsistencies in the model with 16,255 model elements. We

note that the larger the number of solutions, the longer it

takes to find all of them. For example, in the case of the

largest model with 33,347 model elements, there were 65

solutions for fixing one inconsistency (which took 532ms to

find them all) whereas there were only 11 solutions for fixing

two inconsistencies (which took 55ms).

1

10

100

1000

10000

100000

1 10 100

Ti
m

e 
(m

s)

Number of inconsistencies

M=290
M=2212
M=16255
M=33347

Fig. 9. Computation time for different models and inconsistencies

B. Correctness

Another important aspect for the evaluation is the correct-

ness of our approach in terms of: (a) proposing only solutions

that resolve all non-persistent inconsistencies and that are

derived from actions in the available action set Θ (soundness);

and (b) finding all of those solutions (completeness). We

evaluate this by conducting the following process. First, we

randomly remove some of the change actions in Θ. Doing

so may prevent some/all of the non-persistent inconsistencies

from being resolved since there may no longer exist in Θ
the repair actions which are able to resolve them. The test

is whether our approach could be used to correctly identify

those randomly removed actions. This way we can test whether

the guidance is giving correct responses in terms of resolving

inconsistencies. The test is implemented and included with

our scalability evaluation. The correctness test passed in all

29 scenarios (across the four models and different number

of changes), which confirms that our approach is correct.

Future work involves formally proving the correctness of our

approach.

IX. RELATED WORK

There have been a range of techniques and tools proposed

for differencing and merging architectural models. For exam-

ple, the work in [1] focuses on identifying the changes between

versions of a product line architecture and merging those

changes to create a consolidated version. The approach in [10]

is for differencing and merging generic architectural models

that follow the traditional component-and-connector (C&C)

view. However, they only address structural models and do not

deal with inconsistencies during the merging process. Those

techniques are part of the large literature on model merging

(see [2] for a recent survey and the online bibliography

compiling an extensive list of relevant publications in this

field [14]), on which our approach leverages to compute

the differences between model versions and create an initial

merged model (steps 1 & 2 in section V).

Existing model merging techniques mostly focus on dealing

with conflicts. Some recent work start dealing with inconsis-



tencies in model merging but they only focus on detecting

inconsistencies (e.g. [3, 4]). Recently, the approach proposed

in [15] tackles inconsistency resolution in model merging but

it can only suggest highly abstract repairs (based on graph

modification) to the user (as opposed to concrete repairs in our

approach). The recent Eclipse’s EMF Diff/Merge incubation

project [16] also aims to support consistent merging of EMF

models by computing the minimal superset of differences that

must be merged to preserve consistency. Persistent inconsis-

tencies, if existing, would cause a problem in their approach

since they would invalidate any possible merge.

Automation of resolving inconsistencies in models has re-

ceived increasing attention in recent years. Nentwich et al. [17]

proposed an approach for automatically generating abstract
repair options by analyzing consistency rules expressed in first

order logic and models expressed in xlinkit. However, they did

not take into account dependencies among inconsistencies and

potential interactions between repair actions for fixing them.

Some recent work (e.g. [5, 18, 19]) overcomes this limitation

by analyzing the side-effects of the generated repairs. Nonethe-

less, such approaches can only generate abstract repairs and let

the user work out the concrete repair actions. Our work in this

paper tackles this issue by automatically generating concrete

repairs from a set of available actions. Existing approaches

also propose to resolve all inconsistencies at the same time.

Those approaches however only scale up to medium-size

models (e.g. [20]), or limits the depth of the search tree (e.g.

[21]) against the favor of fixing all inconsistencies.

X. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach for resolving syn-

tactical and semantic inconsistencies in the merging of ar-

chitectural model versions. Our approach is able to find all

possible solutions which resolve all non-persistent inconsis-

tencies introduced by merging different versions of an ar-

chitectural model. Our approach also provides guidance for

resolving persistent inconsistencies (which pre-exist in the

model) in terms of telling the software architects exactly which

model elements should be changed to resolve them. We have

demonstrated through a number of empirical studies that our

approach is scalable and not affected by the model size. More

importantly, our approach scales very well to large numbers of

changes in the versions to be merged, indicating its usefulness

and efficiency in situations like merging branches where the

difference between versions tends to be large. In terms of

future work, we will evaluate our approach with real model

versions from a variety of domains to confirm our findings

(including the correctness of our approach) as in the current

evaluation. In addition, we will perform an evaluation of our

tool with human users to fully assess its effectiveness and

usability.

REFERENCES

[1] P. Chen, M. Critchlow, A. Garg, C. Westhuizen, and A. Hoek, “Dif-
ferencing and merging within an evolving product line architecture,” in
Software Product-Family Engineering, ser. Lecture Notes in Computer
Science, F. Linden, Ed., 2004, vol. 3014.

[2] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, and M. Wimmer,
“An introduction to model versioning,” in Formal Methods for Model-
Driven Engineering, M. Bernardo, V. Cortellessa, and A. Pierantonio,
Eds. LNCS 7320: Springer, 2012, pp. 336–398.

[3] P. Brosch, U. Egly, S. Gabmeyer, G. Kappel, M. Seidl, H. Tompits,
M. Widl, and M. Wimmer, “Towards semantics-aware merge support
in optimistic model versioning,” in Models in Software Engineering -
Workshops and Symposia at MODELS 2011, Wellington, New Zealand,
October 16-21, 2011, Reports and Revised Selected Papers, ser. Lecture
Notes in Computer Science, vol. 7167. Springer, 2012, pp. 246–256.

[4] M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chećhik, “Global con-
sistency checking of distributed models with TReMer+,” in Proceedings
of the 30th international conference on Software engineering, ser. ICSE
’08, 2008, pp. 815–818.

[5] A. Reder and A. Egyed, “Computing repair trees for resolving incon-
sistencies in design models,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2012, 2012, pp. 220–229.

[6] J. T. Lallchandani and R. Mall, “A dynamic slicing technique for UML
architectural models,” IEEE Trans. Softw. Eng., vol. 37, no. 6, pp. 737–
771, Nov. 2011.

[7] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and J. R. O.
Silva, “Documenting component and connector views with UML 2.0,”
Software Engineering Institute (Carnegie Mellon University), Tech. Rep.
CMU/SEI-2004-TR-008, 2004.

[8] A. Egyed, “Instant consistency checking for the UML,” in Proceedings
of the 28th International Conference on Software Engineering, ser. ICSE
’06, 2006, pp. 381–390.

[9] Z. Xing and E. Stroulia, “UMLDiff: an algorithm for object-oriented
design differencing,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated Software Engineering, ser. ASE ’05, 2005, pp.
54–65.

[10] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, and D. Garlan,
“Differencing and merging of architectural views,” in Proceedings of
the 21st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’06, 2006, pp. 47–58.

[11] IBM, “IBM Rational Software Architect,”
http://www.ibm.com/software/rational/products/swarchitect/, Accessed
26 September 2013.

[12] A. Reder and A. Egyed, “Model/Analyzer: a tool for detecting, visualiz-
ing and fixing design errors in UML,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’10, 2010, pp. 347–348.

[13] A. Egyed, “Automatically detecting and tracking inconsistencies in
software design models,” IEEE Transactions on Software Engineering,
vol. 37, no. 2, pp. 188–204, March 2011.

[14] “Bibliography on Comparison and Versioning of Software Models,”
http://pi.informatik.uni-siegen.de/CVSM/, Accessed 26 September 2013.

[15] G. Taentzer, C. Ermel, P. Langer, and M. Wimmer, “A fundamental
approach to model versioning based on graph modifications: from theory
to implementation,” Software and Systems Modeling, 2012, Online First.

[16] Eclipse, “EMF Diff/Merge,” http://www.eclipse.org/diffmerge/, Ac-
cessed 26 September 2013.

[17] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency man-
agement with repair actions,” in ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering. IEEE Computer
Society, 2003, pp. 455–464.

[18] H. K. Dam and M. Winikoff, “Supporting change propagation in UML
models,” in Proceedings of the 26th IEEE International Conference on
Software Maintenance, ser. ICSM ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 1–10.

[19] H. K. Dam, L.-S. Le, and A. Ghose, “Supporting change propagation
in the evolution of enterprise architectures,” in Proceedings of the
2010 14th IEEE International Enterprise Distributed Object Computing
Conference, ser. EDOC ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 24–33.

[20] H. K. Dam and M. Winikoff, “An agent-oriented approach to change
propagation in software maintenance,” Journal of Autonomous Agents
and Multi-Agent Systems, vol. 23, no. 3, pp. 384–452, 2011.

[21] M. A. A. da Silva, A. Mougenot, X. Blanc, and R. Bendraou, “Towards
automated inconsistency handling in design models,” in Proceedings
of the 22nd international conference on Advanced information systems
engineering, ser. CAiSE’10, 2010, pp. 348–362.


